High purity zinc (ZN) or zinc compounds (such as ZNO powder) are used as the main raw material, and the purity is usually required to be greater than 99.99%.
1. Sol gel method (SOLGEL)
The process: Zinc salt (zinc nitrate) is used as the precursor, and the sol is formed by hydrolysis and condensation. Then the nano ZNO film or powder is generated after drying and annealing.
Advantages: low cost, controllable components, suitable for large area uniform film formation.
Key parameters: precursor concentration, annealing temperature (usually 400600โ) control grain size.
2 Chemical vapor deposition (CVD)
Steps: Single crystal ZNO films are deposited by reacting zinc sources (such as diethyl zinc) with oxygen on a high temperature substrate (such as sapphire).
Advantages: The film has excellent purity and crystallinity, which is suitable for photoelectric devices.
2 Magnetron sputtering
Steps: The film was sputtered in an oxygen atmosphere with ZN or ZNO target as the source.
4. Doping and defect engineering
N-type doping: commonly AL, GA, IN and other elements are doped to increase the carrier concentration (10ยนโธ-10ยฒโฐ CMโปยณ).
Difficulties of P-type doping: P-type doping is difficult due to ZNO intrinsic defects (such as oxygen vacancy), and N and P doping or compound structure (such as ZNO/MGO heterojunction) are commonly used.
5. Post-treatment process
Annealing optimization: Zinc oxide films are annealed at 300500โ to improve their crystal structure, reduce grain boundary defects, and improve mobility (up to 200 CMยฒ/ (V S)).
Surface passivation: SIOโ or ALโOโ coating is used to suppress surface recombination and enhance light response.
1. Transparent Conductive Film (TCO)
Low resistivity: After doping treatment, the resistivity of zinc oxide film can reach 10โปโด ฮฉ CM level, close to the level of ITO (indium tin oxide).
High carrier concentration: The carrier concentration can reach 10ยฒโฐ CMโปยณ, and the mobility is high, between 1050 CMยฒ/ (V S).
Visible light transmittance>85% (wavelength 400800 NM), resistivity as low as 10โปโด ฮฉ CM (AL doping).
Compared with ITO (indium tin oxide), it has low cost and strong resistance to hydrogen plasma corrosion, which is suitable for flexible display devices.
Applications: touch screens, solar cell electrodes (such as perovskite cells), energy-saving window coatings.
2. Ultraviolet photoelectric devices
High transparency: In the visible light range, the transmittance of zinc oxide film is over 85%, which makes it very suitable for display devices.
Wide band gap: The band gap width of zinc oxide is about 3.37 EV, which can effectively block ultraviolet light, so it can be used to make UV detectors, the response speed of UV detectors is less than 10 NS, and the quantum efficiency is more than 80% (wavelength 365 NM)
The excitation binding energy is up to 60 MEV (higher than the 25 MEV of GAN), suitable for room temperature ultraviolet luminescence and detection.
Applications: UV LED, day-blind ultraviolet detector (military/environmental monitoring).
3. Piezoelectric and sensing applications
The piezoelectric coefficient Dโโ is about 12.4 PM/V (higher than quartz), and the electromechanical coupling coefficient is high.
Gas sensor sensitivity: the detection limit of NOโ and Hโ is as low as PPB (due to the rich active sites of oxygen vacancies on the surface).
Applications: piezoelectric nanogenerator (PENG), microelectromechanical system (MEMS), environmental monitoring sensor, piezoelectric sensor, acoustic wave device
4. Photocatalysis and antibacterial
Photocatalytic degradation efficiency (such as methylene blue)>90% (UV light for 2 hours), antibacterial rate>99.9% (for E. coli).
Visible light response can be extended by doping (such as AG and TIOโ compound).
Applications: self-cleaning coatings, sewage treatment, medical antibacterial materials.
5. Wide temperature stability
Excellent thermal stability (melting point 1975โ) and can work in extreme environment of 200~1000โ.
It has strong radiation resistance and is suitable for aerospace electronic devices.
| characteristic ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | ZnO ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | GaN ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | SiC
| Bandgap๏ผeV๏ผ ย ย ย ย ย ย | 3.37 ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | 3.4 ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | 3.2๏ผ4HSiC๏ผ
| Exciton binding energy๏ผmeV๏ผ ย ย ย | 60 ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | 25 ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย |
| Piezoelectricity ย ย ย ย ย ย ย ย ย ย ย ย ย | powerful ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย |weak ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | none
| cost ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | Low (abundant raw materials) ย ย ย ย ย ย | high ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | Very high
| UV response efficiency ย ย ย ย ย ย ย ย | Excellent ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | good ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย | generally
1. P-type doping problem: a stable P-type doping process (such as LIN co-doping) needs to be developed.
2. Interface defect control: reduce the interface state density in heterojunction devices (such as ZNO/SI).
3. Flexible integration: Develop low temperature process compatible flexible substrates (such as PET).
Zinc oxide has become an ideal material to replace ITO due to its advantages of high transparency, low resistance, flexibility and abundant resources. It has a broad application prospect in flexible electronics, clean energy and sensors. In the future, with the continuous optimization of process, zinc oxide is expected to be applied in more high-end fields.
Applications: touch screens, solar cell electrodes (such as perovskite cells), energy-saving window coatings.
Applications: UV LED, day-blind ultraviolet detector (military/environmental monitoring).
Applications: piezoelectric nanogenerator (PENG), microelectromechanical system (MEMS), environmental monitoring sensor, piezoelectric sensor, acoustic wave device
Applications: self-cleaning coatings, sewage treatment, medical antibacterial materials.
Industry application technical index advantages Infrared detector and imaging Mid-wave infrared response:...
Industrial application of aluminum arsenide materials High temperature electronic devices High temperature...
Industry applications Solar cells High photoelectric conversion efficiency: the highest efficiency in...
Application scenarios of gallium nitride materials Power electronics Power devices: Gallium nitride field-effect...
Core application areas of indium phosphide Optical communication and laser technology 1550 NM laser:...
Advantages of application technical indicators Technical performance Through ion implantation or diffusion...
Application scenario advantages Semiconductor devices: used to manufacture power devices such as MOSFET...
Apply technical advantages Photovoltaic field: โฆ Conversion efficiency 15%-22% (PERC technology), cost...
Application advantages Photovoltaic field: conversion efficiency of 24% (polysilicon only 18-20%), combined...
Industry applications High frequency communication and 5G/6G RF power amplifier: used in 5G base stations...
Supports advanced nodes such as [5-22nm FinFET/BCD/GAA] to meet the needs of high-performance computing (HPC), AI chips, etc.
MPW (Multi-Project Wafer) Service: Small batch trial production to reduce customers' initial costs. Customized process development: Cooperate with customers to conduct DTCO (Design-Process Co-Optimization), customize design rules and process parameters.
We support the joint solution of "wafer foundry + advanced packaging" (such as 3D IC, heterogeneous integration) to avoid the loss of multi-supplier collaboration. Unlike pure foundries, we verify the process stability through mass production of our own chips to reduce the risk of tape-out for you.
Electronic manufacturing services and printed circuit board assembly.
EMS provides a wide range of electronic manufacturing services, including everything from circuit board design to supply chain management to assembly, testing and after-sales support.
PCBA is a link in EMS that focuses on the assembly of printed circuit boards, covering component placement, soldering and related testing, connecting electronic components to manufactured printed circuit boards.
Title: Semiconductor manufacturing processes Objective: To have a certain foundation for the overall...